Finding and Choosing Among Multiple Optima

نویسندگان

  • John Guenther
  • Herbert K. H. Lee
  • Genetha A. Gray
چکیده

Black box functions, such as computer experiments, often have multiple optima over the input space of the objective function. While traditional optimization routines focus on finding a single best optimum, we sometimes want to consider the relative merits of multiple optima. First we need a search algorithm that can identify multiple local optima. Then we consider that blindly choosing the global optimum may not always be best. In some cases, the global optimum may not be robust to small deviations in the inputs, which could lead to output values far from the optimum. In those cases, it would be better to choose a slightly less extreme optimum that allows for input deviation with small change in the output; such an optimum would be considered more robust. We use a Bayesian decision theoretic approach to develop a utility function for selecting among multiple optima.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction Between Race and Gender and Effect on Implicit Racial Bias Against Blacks

  Background and aims: <span style="color: #221e1f; font-family: Optima ...

متن کامل

Suicide and Associated Risk Factors Among College Students

  Background and aims: <span style="color: #221e1f; font-family: Optima ...

متن کامل

The Multi-Funnel Structure of TSP Fitness Landscapes: A Visual Exploration

Abstract. We use the Local Optima Network model to study the structure of symmetric TSP fitness landscapes. The ‘big-valley’ hypothesis holds that for TSP and other combinatorial problems, local optima are not randomly distributed, instead they tend to be clustered around the global optimum. However, a recent study has observed that, for solutions close in evaluation to the global optimum, this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013